p96机床

故障器件汽车车用FPGA在赛车引擎控制单元中的应用

基于MCU、定制ASIC和体积庞大的电线束来实现引擎及控制电子的系统方案已发展至接近其技术和应用极限,汽车工业正面临新的设计挑战,本文介绍FPGA在赛车引擎控制单元中的应用,帮助设计人员缓解产品更快推出市场的压力、减少元件数目、在单一硬件平台上实施标准化以及满足不断升级的安全要求。

  过去汽车电子产品的开发周期是漫长的,而现在许多汽车制造商现正致力于在更短的时间内,装备消费者所需的新一代汽车。诸如GPS导航系统和DVD播放机等设备的产品生命周期相对较短,因此,产品推向市场的速度非常重要。今天,采用ASIC可能会使开发周期增加30周,加上掩模成本大幅攀升,使得开支和风险也进一步提高。

  与此同时,因为当今的汽车引入了许多标准和技术,使ASIC的应用缺乏灵活性,从而增加其被废弃和延迟应用的风险。消费者还要求享有各种功能选项,使得汽车厂商必需以一套元件组合为基础,再根据不同需求进行配置。为了快速实现这些高度集成和不断变化的系统,能够使产品快速推向市场的FPGA为汽车厂商带来了所需的灵活性,可在现场进行系统硬件升级,而毋须执行昂贵的返工工程和部件更换。所以,FPGA现已应用于汽车电子中,范畴从设计验证到制造和服务。随着汽车内的空间日益宝贵,可编程逻辑能在小型单芯片方案上集成许多不同功能的特性也显得极具吸引。

  FPGA器件的可靠性和安全性

  汽车电子设计人员通过使用具有扩展温度范围的FPGA技术,能够显著提高应对多种故障的能力。虽然许多元件供应商采用预防性的设计技术及限定方法来模拟和仿真环境影响,但是某些FPGA构架在承受扩展温度范围方面仍然具有先天优势。举例说,Actel以反熔丝为基础的汽车器件能承受业界最高的结点温度(+150℃),为设计人员的高可靠性系统带来更大的性能冗余。

  在高温下工作的能力不仅有利于抵御故障。由于汽车电子应用在空间和成本上都没有余地来加设风扇和散热装置,因此器件必须在没有外部散热装置的情况下仍能提供所需的性能。

  极端的环境往往会导致与FPGA组装和封装相关的故障模式,而与装置本身无关。所以在汽车电子系统的各个层面预留规格余地非常重要。FPGA供货商如Xilinx和Actel等提供的产品具有较宽的军用温度范围,能够更好地定义热膨胀系数,避免热应力的影响。

  即使在正常的温度和电压下工作,在FPGA的栅极氧化膜上反复施加电压应力最终也会使器件内的电介质绝缘层发生击穿。这种随使用时间累计而产生的击穿现象称为“时间相关绝缘击穿”(TDDB)。加上深亚微米技术的应用,会增加这类故障在现场发生的风险。

  问题是新工艺采用了高压应力测试进行评估。这类测试在取得氧化膜寿命的统计预测数据以及探测重要的制造与工艺难度方面很有效,但在建模和预测产品的早期故障方面收效甚微,特别是对于偶发性的故障。最初的击穿会在器件投入使用后很短时间内造成严重的故障后果(见图1)。

恒压条件下4

图1:恒压条件下4.2nm氧化膜的TDDB评测结果(注意早期击穿区域产生的偶发性故障)。

  找出及消除这些最初击穿故障的原因是一大挑战。从TDDB数据进行测试和验证能得出氧化膜的真正击穿寿命极限,但是这些数据在确定单个器件产品的寿命方面并不可靠。

  即使半导体供应商有方法找出或消除早期故障,越来越多推测指出90nm器件的真正寿命周期可能不足以满足许多商业应用的要求。如果这些理论正确,汽车产品设计人员可能别无选择,只有指定基于更可靠几何尺寸和工艺的器件,为了提高可靠性而被迫放弃新一代工艺的边际效益。

0.26041007041931 s