p96机床

测试系统信号风力发电机实验测试系统的设计与实现

定时器中断来触发A/D芯片进行数据采集,同时利用CPLD控制A/D芯片同步采样。采用内部软件滤波,要求滤除干扰的奇次谐波,实验结果证明滤波效果明显。
关键词: 数据采集; DSP; 信号调理

风能是一种用之不竭、清洁的可再生能源,在众多可再生能源中具有很大潜力。我国风力资源丰富,研究发展适合风力发电使用的风力发电机,具有重要的理论意义与实用价值[1]。风力发电机研制成功后,为了保证风力发电机的正常运行与安全,出厂前的测试显得至关重要。目前的风力发电机测试系统中,测试参数单一,需用多个测试设备分别测试不同的参数。
  针对目前风力发电机测试设备的缺点,本文设计了一套基于数字信号处理器TMS320C5416的功能全面的风力发电机测试系统,解决了以往测试仪器功能单一的问题。其中数据采集部分是整个系统高精度测量的关键所在。本数据采集部分以THS1206和ADS7864为核心,采用CPLD和DSP对两种采集芯片进行逻辑控制与数据传输,同时采集22个通道的数据,分别为8路交流电压、8路交流电流、2路直流电压、2路直流电流和2路4~20 mA信号。由于本测试系统需对交流部分进行频谱分析,对于需要进行频谱分析部分采用最高速率为6 MS/s的THS1206,不需进行频谱分析的部分采用可同步采样的ADS7864。采样转换精度为12 bit,利用前端信号调理电路可将待测信号调理到-5 V~+5 V,这种结构很好地满足了风力发电机测试系统的精度高、速率快、简单可靠的要求。
1 系统总体设计
  本文的风力发电机测试系统总体实现框图如图1所示,主要组成部分为DSP和2种A/D芯片(分别为4片THS1206和4片ADS7864)。图中,8路0~1 500 V的交流电压和8路0~10A的交流电流首先经过交流电压互感器和交流电流互感器后分别变为-5 V~+5 V交流电压和0~5 A的交流电流。此外,本系统需测试的还有2路0 ~1 500 V直流电压,2路0~100 mA直流电流,2路4~20 mA标准信号。22路需测试的信号全部经过各自的信号调理电路,将电压范围调理到A/D芯片适用的范围。核心器件CPU采用TI公司的TMS320C5416, TMS320C5416是一种低功耗、高性能的16位定点DSP芯片,速度为160 MIPS,集实时信号处理能力和控制器外设功能于一身。满足测试系统要求,负责数据实时采集与处理。大规模可编程逻辑器件CPLD主要完成系统各个功能模块的总线(数据总线、地址总线、控制总线)管理。时钟电路可方便显示整个测试系统的采样开始与结束时间,可具体显示到年、月、日、时、分、秒,方便观看。LCD液晶显示屏可方便观测频谱分析的谐波波形。键盘作为整个测试系统的一个输入设备,可控制系统启动。TMS320C5416本身内部只有16 KB的ROM和128 KB的RAM,由于本测试系统需采集大量数据进行测试,所以有必要进行存储器外扩来进行数据及时存储,其中SRAM用于存储实时动态数据,Flash存储的数据可防止掉电时丢失,E2PROM用于存储采样频率及前端互感器的变比等。通过USB接口连接PC机,用于保存每次的测量结果,方便管理与打印,利于查找。


2 测试系统硬件设计
2.1 THS1206与TMS320C5416的接口电路
THS1206是TI公司推出的可编程、多通道、低功耗、内置FIFO的12位并行高速A/D转换芯片,功耗只有220 mW,最高采样速率可达到6 MS/s,4通道同时采样单通道采样速率可达到1 MS/s以上,完全满足本系统需要进行频谱分析的高速率要求[3]。
THS1206模数转换器主要特点是四个模拟通道可同时实现无相差采样,即可同时由采样方式转换到保持方式下。四个模拟通道可设置为3种方式:(1)四个单通道输入;(2)两个差分通道输入;(3)两个单通道输入和一个差分通道输入。THS1206提供了三个参考电压(1.5 V、2.5 V、3.5 V)。它的许多引脚功能是可编程的,这使得其与处理器的硬件接口很灵活,转换结果以并行方式通过数据总线的D0~D11位来传送。


由于本文的风力发电机测试系统需要进行频谱分析的是交流部分,8路0~1 500 V的交流电压和8路0~10 A交流电流,用于交流部分频谱分析的A/D芯片THS1206为4通道输入芯片,所以本系统需用4片THS1206。
2.2 ADS7864与TMS320C5416接口电路
 ADS7864是德州仪器(TI)公司Burr-Brown产品部推出的快速6通道全差分输入的双12位A/D转换器。能以500 kS/s的采样速率进行6通道同时采样,特别适合于数据采集系统中电力参数的采集[4]。
 图3为TMS320C5416与一片ADS7864的接口电路,6个差分模拟输入通道CHA0、CHA1、CHB0、CHB1、CHC0和CHC1输入的模拟信号被ADS7864的6个采样保持器保持,当ADS7864对采样的6路信号转换完毕后,ADS7864的BUSY引脚产生中断信号,与DSP的INT0引脚相连表示转换完毕,DSP可以通过中断程序对转换完毕的采样信号进行读取与处理。ADS7864的A2、A1、A0为地址和模式控制端,用于选择数据的读出方式,这里A2A1A0=110,输出模式为循环方式。BYTE信号用于决定输出数据宽度,令其为低电平,一次输出16位信号(DB15~DB0),CLOCK信号用作A/D转换所需的时钟,这里选择时钟的最高工作频率为8 MHz,由CPU的时钟提供。控制三组输入通道的采样/保持信号HOLDA、HOLDB、HOLDC连接在一起,由CPLD进行控制。

由于TMS320C5416的I/O口工作电压是3.3 V,ADS7864的数字端工作电压是5 V,所以它们之间必须连接由5 V转换到3.3 V的电平转换芯片74LVC16245。本文风力发电机测试系统需要同步测试22路信号,ADS7864为6通道差分输入A/D转换芯片,所以本系统需用4片ADS7864芯片。22路信号的同步采集由CPLD控制每片ADS7864的HOLDX引脚为低电平来实现。
3 测试系统软件设计
3.1 系统整体软件设计
  本文风力发电机测试系统主程序流程图如图4(a)所示。首先进行系统初始化,根据DSP芯片固有的功能和特征,进入主程序的入口设置,所有寄存器清零,进行程序存储器ROM区和数据存储器RAM区的初始化,中断矢量设置等主程序运行前的准备工作,以及检查系统电源,监视芯片上电后的DSP芯片内的硬件运行情况。当DSP芯片运行正常后,进入测试系统软件的主程序运行,使用默认配置参数来设定系统的存储器资源和总线占用资源。


  系统在默认配置参数正常的情况下,开始定时器设置,系统可通过定时器的设置确定采样时间。在一次采样结束后,首先进入数据预处理,再将数据通过USB接口向上位机传送。同时需要进行频谱分析的数据在液晶显示屏里显示出来。每次采样及数据处理结束后,都要对数据的采样数量进行判断,如果条件满足,则系统数据采样处理过程结束。如果不满足,还要继续进行定时器设定时间的判断,如果定时器设定时间到,则进行新一轮的采样过程,否则进行等待循环状态。

在本文风力发电机测试系统中,对22路输入信号的采集至关重要,对于其中交流部分需要进行频谱分析,频谱分析中涉及到FFT变换,则要求系统具有很高采样速率。不需要进行频谱分析部分则要求同步性要好。本文所设计的风力发电机测试系统采用了两种A/D芯片,很好地满足了系统要求,实时性强、精度高,功能综合,能够同时测试多个不同参数,解决了目前风力发电机测试系统测试参数单一的缺点,并且内部算法滤波效果明显,达到了滤波要求。
参考文献

0.36268901824951 s